Laser-based powder bed fusion additive manufacturing of pure copper

نویسندگان

چکیده

In this article, the laser-based powder bed fusion (L-PBF) processing behavior of pure copper is evaluated by employing a conventional infrared fiber laser with wavelength 1080 nm, small focal spot diameter 37.5 µm, and power levels up to 500 W. It shown that bulk solid parts near full density (? Archimedes = 99.3 ± 0.2%, ? Optical 99.8 0.1%) can be produced using W for chosen combination particle size, L-PBF settings, baseplate. Moreover, at W, relative exceeding 99% are manufactured within volumetric energy window 230–310 J/mm3, while below did not produce above 99%. An analytical model used elucidate behavior, wherein both conduction keyhole regimes corresponding employed settings identified. The model-based results predict in regime prior onset keyhole-induced porosity, which accordance porosity types observed parts. fabricated exhibit an electrical conductivity 94 1% compared international annealed standard (IACS) demonstrate tensile strength 211 4 MPa, yield 122 1 elongation break 43 3% as-built condition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consolidation phenomena in laser and powder-bed based layered manufacturing

Layered manufacturing (LM) is gaining ground for manufacturing prototypes (RP), tools (RT) and functional end products (RM). Laser and powder bed based manufacturing (i.e. selective laser sintering/melting or its variants) holds a special place within the variety of LM processes: no other LM techniques allow processing polymers, metals, ceramics as well as many types of composites. To do so, ho...

متن کامل

Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing

Laser-powder bed fusion (L-PBF) additive manufacturing involves complex physics such as heat transfer and molten metal flow, which have a significant influence on the final build quality. In this study, transport phenomena based modeling is used to provide a quantitative understanding of complex molten pool transients. In particular, a three dimensional (3D), transient numerical model is develo...

متن کامل

Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density

The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating ma...

متن کامل

Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modificatio...

متن کامل

Numerical Investigations on Hatching Process Strategies for Powder Bed Based Additive Manufacturing using an Electron Beam

This paper extends 3D simulation results of layer hatching process strategies for additive manufacturing by electron beam melting (EBM) applications to exploit the future energy potential of electron guns with higher beam power. The physical model, discretized by a three dimensional thermal lattice Boltzmann method, is briefly presented. The numerical implementation is validated on the basis of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Additive manufacturing

سال: 2021

ISSN: ['2214-8604', '2214-7810']

DOI: https://doi.org/10.1016/j.addma.2021.101990